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A cross metathesis approach to the synthesis of the
C11–C23 fragment of (�)-16-normethyldictyostatinI
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Abstract—The synthesis of the C11–C23 fragment 2 of (�)-16-normethyldictyostatin has been achieved by cross metathesis between
two olefinic fragments 4 and 5 followed by a reduction of the double bond at C16–C17. Both the olefinic fragments are easily
synthesized in a diastereoselective manner from the common precursor alcohol 7.
� 2006 Elsevier Ltd. All rights reserved.
Around half of the drugs currently in clinical use are of a
natural product origin.1,2 Among them marine macro-
lides have recently gained a significant importance as
potent disrupters of cell cycle events. Dictyostatin
(Fig. 1) is a marine-derived macrolide that was first iso-
lated by Pettit et al. from Spongia sp.3 It was demon-
strated that dictyostatin inhibited the growth of
human cancer cells with GI50 from 50 pm to 1 nM.4

Most importantly, it retains the activity against taxol
resistant cancer cells that express an active P-glycopro-
tein. Initial studies demonstrated that dictyostatin
arrests the cell in the G2/M phase by potently inducing
tubulin polymerization and suppressing microtubule
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Figure 1.
dynamics, leading to an apoptosis similar to that seen
in cells exposed to palcitaxel.5 With the promising anti-
mitotic properties of dictyostatin and other polyketides
of marine origin, which include laulimalide,6 peloruside
A7 and discodermolide,8 natural products may lead to
the development of anticancer drugs. The significant
biological properties of dictyostatin coupled with its
scarcity in nature and densely functionalized structure
has prompted numerous studies directed towards its
synthesis. So far, the total synthesis of dictyostatin has
been achieved by the groups of Curran9 and Paterson.10

More recently, an analogue (�)-16-normethyldictyosta-
tin was shown to be essentially equipotent to its parent
compound against human ovarian carcinoma 1A9 cells
and its clones 1A9PTX22.11 In considering a strategy
for the synthesis of (�)-16-normethyldictyostatin, herein
we report a cross metathesis approach for the synthesis
of the C11–C23 fragment.

The retrosynthetic analysis revealed that the C11–C23
fragment of (�)-16-normethyldictyostatin 2 can be
assembled by following a cross metathesis approach be-
tween 4 and 5, followed by the reduction of the double
bond at the C16–C17 position in 3. Both the olefinic
fragments 4 and 5 with the desired stereochemistry are
easily accessible from the common precursor aldehyde
6, which in turn can be synthesized from alcohol 7 in
a diastereoselective manner in a few steps (Scheme 1).

As depicted in Scheme 2, our synthesis commenced with
the addition of the titanium enolate derived from
the acyloxazolidinone to aldehyde 8 (synthesized from
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Scheme 1. Retrosynthesis of the C11–C23 fragment 2.
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Scheme 2. Reagents and conditions: (a) (COCl)2, DMSO, CH2Cl2,
�78 �C, 30 min, then 7, Et3N, �78 to rt, 1 h, 95%; (b) TiCl4, (�)-
sparteine, CH2Cl2, 0 �C, 1.5 h, 97%; (c) NaBH4, THF/H2O 5:1, 0 �C to
rt, 12 h, 90%; (d) (i) (OMe)2CHC6H4OMe, CSA, CH2Cl2, rt, 4 h, 70%;
(ii) DIBAL-H, CH2Cl2, 0 �C, 3 h, 80%; (e) (COCl)2, DMSO, CH2Cl2,
�78 �C, then Et3N, 0 �C, 1 h, 91%; (f) (i) MeOCH2PPh3Cl, NaHMDS,
THF, �40 to 0 �C, 2 h; (ii) PPTS, dioxane/H2O 9:1, 50 �C, 12 h, 85%;
(g) CH3PPh3Br, NaHMDS, Et2O, 0 �C, 4.5 h, 90%.
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Scheme 3. Reagents and conditions: (a) Bu3SnCH2CH@CH2, SnCl4,
CH2Cl2, �90 �C, 1 h, 90%; (b) (i) DMP, CH2Cl2, rt, 1 h, 90%; (ii)
DDQ, CH2Cl2/H2O 20:1, 0 �C, 1 h, 77%; (c) DIBAL-H, THF, �78 �C,
5 h, 70%; (d) (i) BCl3, toluene, �78 to 0 �C, 3 h, 65%; (ii) TBSOTf,
i-Pr2NEt, CH2Cl2, 0 �C, 1.5 h, 93%.
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alcohol 712 by Swern oxidation13) resulting in the forma-
tion of syn aldol product 914 in a 97% yield and excellent
diastereoselectivity (P96%). A reductive removal of the
chiral auxiliary with NaBH4 in THF/H2O15 gave 1,3-
diol 10,16 which was protected with 4-methoxybenzalde-
hyde dimethylacetal17 followed by a selective opening of
the benzylidene ring using DIBAL-H to give primary
alcohol 11.18 Swern oxidation of 11 yielded the crucial
aldehyde 6 with the required contiguous stereocentres.
The two step sequential homologation19 of aldehyde 6
via 12 followed by Wittig olefination20 afforded frag-
ment 421 in a 76% yield over three steps.

The synthesis of the olefinic fragment 5 via SnCl4 med-
iated diastereoselective addition of allyltributyltin to
aldehyde 6 gave a 70:30 ratio in favour of the undesired
stereocentre at C19 of alcohol 13.22 This result can be
explained by considering the syn diastereomeric (nonre-
inforcing) relationship between a-alkyl and b-alkoxy
substituents23 influencing the incoming nucleophile to
the aldehyde in the anti-Felkin mode. The oxidation of
13 using Dess–Martin periodinane24 followed by depro-
tection of the MPM group with DDQ25 yielded the
hydroxy ketone 14 in a 77% yield (Scheme 3). The
reduction of 14 with DIBAL-H in THF produced 1,3-
syn diol 15 with a high diastereoselectivity (P90%).26

Finally, the benzyl group of 15 was deprotected using
boron trichloride22,27 followed by a global protection
of the resulting triol with TBSOTf28 to afford 529 in a
93% yield.

With the two main fragments 4 and 5 in hand, the cross
metathesis30 (CM) strategy was adopted using Grubbs’
2nd generation catalyst (10 mol %) to yield the desired
product 331 in a 50% yield along with the homodimer
of the starting olefinic compound 4. Deprotection of
the benzyl ether and reduction32 of the double bond of
compound 3 using excess Raney Ni under a H2 atmo-
sphere provided the required C11–C23 core fragment 2
in a good yield and with the required stereocentres
(Scheme 4).33

In summary, we have developed an efficient route for the
synthesis of the C11–C23 fragment of (�)-16-nor-
methyldictyostatin using a cross metathesis approach.
The most interesting feature of this synthesis is that both
the olefinic partners required for cross metathesis were
synthesized from a common intermediate 6 and the cross
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Scheme 4. Reagents and conditions: (a) Grubbs’ II catalyst
(10 mol %), rt, 36 h, 50%; (b) H2, Raney Ni (excess), EtOH, rt, 85%.
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metathesis between fragments 4 and 5 gave an apprecia-
ble yield of the desired product 3. This flexible approach
has provided us with a robust route towards the total
synthesis of (�)-16-normethyldictyostatin and structural
analogues for biological studies, which are currently
under way in our laboratory.
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